CSL group

Professor John D. Lee

John Lee

Extended Homepage

Email:jdlee at engr.wisc.edu

John's research focuses on the safety and acceptance of complex human-machine systems by considering how technology mediates attention. This research is grounded in conceptual and computational models of human-technology interaction. Applications include trust in technology, tele-health, advanced driver assistance systems, and driver distraction.

Keywords: Trust, Technology-mediated attention, Mixed-initiative systems

Erin Chiou, PhD candidate

Erin Chiou

Extended Homepage

Email: chiou2 at wisc.edu

Erin's research focuses on understanding how interruptions impact cooperation in human-machine systems. Her broader interests include trust in technology, device design, and the impact of technology in healthcare related work systems.

Keywords: Teamwork, Automation, Healthcare

Patricia Ferrara, PhD candidate

Pat Ferrara

Email: pferrara at wisc.edu

Pat investigates worker interaction with automation in radically changing work systems with particular focus on industrially developing regions. She is creating a model linking technology adoption to organizational change that will guide in learning interventions and she will apply the model to poultry growers in an integrated production system in the north of Mozambique.

Keywords: Strategies; Human-automation interaction; Industrially developing countries.

Mahtab Ghazizadeh, PhD candidate

Mahtab Ghazizadeh

Extended Homepage

Email: ghazizadeh at wisc.edu

Mahtab's research focuses on several aspects of human factors engineering, mainly technology acceptance and modeling human-technology interaction. She uses a variety of statistical modeling techniques to model users' attitudes toward technology. Her current project involves modeling older adults' acceptance of Elder Tree, a community-based information and communication technology (ICT) that enhances aging in place.

Keywords: Modeling human-automation interaction, Automation acceptance, Statistical modeling

Joonbum Lee, PhD candidate

Joon Bum Lee

Extended Homepage

Email: jlee299 at wisc.edu

JB is currently developing a computational model to evaluate potential distraction for in-vehicle devices. He is interested in how symbolic top-down process coordinates with bottom-up process in visual attention. He has been working on combining drivers' expectation and visual salience on the interface.

Keyword: Driver distraction

Anthony McDonald, PhD candidate

Anthony McDonald

Extended Homepage

Email: admcdonald at wisc.edu

Tony studies applied machine learning with a focus on detecting driver impairment and understanding driving behavior. Recently he has been developing algorithms for detecting and differentiating driver distraction, drowsiness, and alcohol impairment. In his spare time Tony investigates the links between sleep apnea and driving patterns, evaluates the potential of symbolic time-series analysis for identifying driving events, and conducts text mining analyses of large public databases.

Keywords: Driver fatigue, Machine learning, Data mining

Shadeequa D. Miller, PhD candidate

Shadeequa Miller

Email:sdmiller3 at wisc.edu

Dee is currently conducting research to identify and understand privacy management and information-sharing behaviors of older adults as well as their informal caregivers, with the aim of guiding the design of information presentation and privacy control on user interfaces for consumer products. She is particularly interested in identifying ways to improve information management and presentation that motivate people to behave in a healthy manner.

Keywords: Human-computer interaction, Interface design, Privacy Informatics, Healthcare, and Mobile and ubiquitous devices

Rashmi Payyanadan, PhD student

Rashmi Payyanadan

Extended Homepage

Email: payyanadan at wisc.edu

Rashmi studies safe driving behavior of older adults when developing Advanced Driver Assistance Systems to support them. The methodology to assess safety implications of ADAS (Advanced Driver Assistance Systems) have not yet been developed, but these support systems need to be designed such that they do not produce negative side effects for older adults. While not much research has been done to understand user acceptance and effects of ADAS technologies on road user behavior; there are concerns on whether these systems will be used by older drivers and in fact improve road safety. As ADAS technologies continue to advance, her research work is to explore opportunities for older drivers to prolong their mobility by assessing and improving their use of ADAS technologies.

Keywords: ADAS technologies, Older adults, Safe driving

Shannon C. Roberts, PhD candidate

Shannon Roberts

Extended Homepage

Email: scroberts at wisc.edu

Shannon's research focuses on giving drivers feedback on their performance in hopes of raising their awareness of the consequences of their actions and inducing a positive behavior change. This can be achieved by giving drivers information of their peers driving behavior, thereby enforcing social norm conformance.

Keywords: Feedback, Behavior change, Social norms

Vindhya Venkatraman, PhD candidate

Vindhya Venkatraman

Extended Homepage

Email: venkatraman at wisc.edu

Vindhya's research centers on facilitating information exchange between human users and systems using human-computer collaboration theories, such as mixed initiative interaction and joint action. She applies these concepts to in-vehicle information systems, developing models of collaborative dialogues across the wide spectrum of driver-vehicle-situation complexities.

Keywords: Automated Vehicles, Collaborative technology, Information Exchange, Mixed initiative interaction


Alumni

Bobbie D. Seppelt, Post-Doc

Bobbie Seppelt

Bobbie D. Seppelt’s research focused on operator performance and behavior in use of complex automation systems, with the aim of promoting collaborative, productive human-automation interaction as mediated through provided information displays.  In the design and evaluation of interfaces, she has applied multiple theoretical approaches including Ecological Interface Design, Cognitive Work Analysis, Representation Aiding, and Multiple Resource Theory.  Her expertise includes interface design for driver support systems, evaluation of operator trust and reliance on automation for supervisory control tasks, and application of ecological frameworks to interface design.

Keywords: Human-automation interface design

Mai Lee Chang, M.S.

Mai Lee Chang

Mai Lee's research interest centered on human-automation interaction, specifically trust and reliance. Her current research investigates the influence of automation transparency and capability on unmanned vehicle operators’ trust and reliance.

Keywords:  Human-automation interaction, Trust in automation